Chapitre 6 : Orthogonalité et moindres carrés

But

Rappelons le résultat suivant : Si $A \in M_{n \times n}(\mathbb{R})$, on a les équivalences suivantes :

Mais : si la matrice A est singulière, on peut trouver des vecteurs $\vec{b} \in \mathbb{R}^n$ tels que

$$A\vec{x} = \vec{b}$$

soit incompatible.

Plus généralement, si $A \in M_{m \times n}(\mathbb{R})$, il peut exister des vecteurs $\vec{b} \in \mathbb{R}^m$ pour lesquels

$$A\vec{x} = \vec{b}$$

soit incompatible.

Dans ces cas, on va essayer d'approximer \vec{b} en cherchant $\vec{x} \in \mathbb{R}^n$ avec

6.1 Produit scalaire

Définition 58 (produit scalaire usuel dans \mathbb{R}^n).

Soient $\vec{u}, \vec{v} \in \mathbb{R}^n$. On définit le produit scalaire usuel $\vec{u} \cdot \vec{v}$ (parfois aussi noté $\langle \vec{u}, \vec{v} \rangle$) par

Remarque

Théorème 56. Soient $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ et soit $\alpha \in \mathbb{R}$. Alors

- 1.
- 2.
- 3.
- 4.

Preuve

Généralisation

Définition 59 (produit scalaire).

Soient V un espace vectoriel et $u, v \in V$. On dira qu'une application

est un produit scalaire si les conditions suivantes sont satisfaites :

- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- 3. $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$ pour tout $\alpha \in \mathbb{R}$
- 4. $\langle u, u \rangle \ge 0$ avec $\langle u, u \rangle = 0$ si et seulement si $u = 0_V$.

Norme d'un vecteur et distance dans \mathbb{R}^n

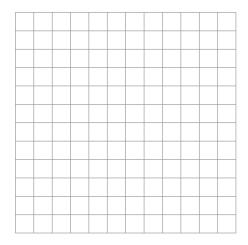
Définition 60 (norme).

Soit $\vec{v} \in \mathbb{R}$. La norme de \vec{v} est le scalaire donné par

Remarque

Propriétés

Exemples



Définition 61 (unitaire).

Un vecteur $\vec{v} \in \mathbb{R}^n$ est dit *unitaire* si \vec{v} est de norme 1.

Remarque

Exemple

Définition 62 (distance).

Soient $\vec{u}, \vec{v} \in \mathbb{R}^n$. La distance entre \vec{u} et \vec{v} est définie par la norme du vecteur $\vec{u} - \vec{v}$. On la note

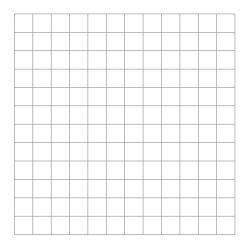
Remarque

Exemples

6.2 Orthogonalité

Dans \mathbb{R}^2 , considérons les vecteurs \vec{u} et \vec{v} , ainsi que $d_1 = \operatorname{span}\{\vec{u}\}$ et $d_2 = \operatorname{span}\{\vec{v}\}$ les deux droites vectorielles associées.

 $\mathbf{But}:$ Trouver une condition sur \vec{u} et \vec{v} pour que les deux droites vectorielles soient orthogonales.



Définition 63 (vecteurs orthogonaux). Soient $\vec{u}, \vec{v} \in \mathbb{R}^n$. Les vecteurs \vec{u} et \vec{v} sont $orthogonaux$ si et seulement si
Théorème 57 (de Pythagore). Soient $\vec{u}, \vec{v} \in \mathbb{R}^n$ alors
Preuve
Orthogonal à un sous-espace vectoriel de \mathbb{R}^n

Définition 64 (ensemble orthogonal).

Soit W un sous-espace vectoriel de \mathbb{R}^n .

- 1. Un vecteur $\vec{v} \in \mathbb{R}^n$ est dit orthogonal à W s'il est orthogonal à tous les vecteurs du sous-espace W.
- 2. On définit l'orthogonal de ${\cal W}$ par

Théorème 58. Soit W un sous-espace vectoriel de \mathbb{R}^n . Alors 1.

2.

Preuve

Remarque

Théorème 59. Soit A une matrice $m \times n$ donnée par $A = (\vec{a}_1 \cdots \vec{a}_n)$ où $\vec{a}_i \in \mathbb{R}^m$. Soient

$$Ker(A) =$$

$$\operatorname{Im}(A) =$$

$$Lgn(A) =$$

Alors

1.

2.

Preuve

Exemple